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ABSTRACT - The resolved rate law for a manipulator provides the instant

aneous joint rates required to satisfy a given instantaneous hand

motion. When the number of degrees of fleedom in the task space is the

same as the numbel of degrees of freedom in the joint space the Jacobian

matrix is square and the resolved rate law is easily determined for

non-singular confisttrations. When the joint space has more degrees of

freedom than the task space the manipulator is kinematically redundant

and the kinematic rate equations are under-determined. In this paper an

objective function is optimized with respect to the n kinematically

redundant rate equations to provide an optimal resolved rate law that

can be tuned to control the joint motion in a variety of ways. This law

is used in an iterative algorithm to find joint angle solutions to the

inverse nonlinear kinematic equations. The behaviour of the optima!_

resolved rate law is demonstrated and investigated in a _ degree of

fIeedom kinematically redundant plana_ arm model. A weighting matrix

is used in the resolved rate law to avoid reach limits during the

trajectory to a desiled hand state. The treatment is applicable to

manipulators with any numbel of revolute joints.

J

1.0 INTRODUCTION

The resolved rate law for a manipulator converts the instantaneous

hand rates into instantaneous joint rates [I]. This allows the joints

to be simultaneously commanded to move the hand with a desired instanta-

neous translational and rotational velocity. The space that the hand

moves in is called the task space [2], which is usually composed of 6

degrees of freedom. The space mapped out by the joint angles is called

the joint space. The mathematical relationship between the task space

and the joint space defines the resolved rate law for the manipulator.

The kinematic equations express the hand state in terms of the

manipulator joint angles and are usually very nonlinear. It is usually

straight-forward, but tedious to write down the kinematic equations that

express the hand state in terms of the joint angles. It is easy to

differentiate the kinematic equations to arrive at an expression for the

hand translational and rotational rates in terms of the joint rates.

The matrix that results is sometimes called the Jacobian matrix for the

manipulator. The kinematic equations for most manipulators are very

nonlinear and generally cannot be inverted to solve for the joint angles

in terms of the hand parameters (2].

The Shuttle Remote Manipulator System (SRMS) has six joints and the

end-effector operates in a six degree of freedom space (three spacial

and three angular). This is a convenient design because the number of

degrees of freedom in the joint space and in the task space are the

same; the Jacobian matrix is square and can be easily inverted, except

in specific configurations where the Jacobian matrix is singular. When

these singularities are avoided, the inverted Jacobian is a valid

resolved rate law for the SRMS because it transforms a desired end-



effector translational and rotational velocity into joint rate commands.

The joint rate commands can be issued periodically to the six servo

motors to accomplish an end-effector motion as desired.

The simple resolved rate law described above is used in the SP_MS

flight software to drive the manual and the automatic modes. For these

modes there is a requirement to move the hand coordinate system (or some

coordinate system rigidly associated with the hand system) from one

state to another with translation along a relatively straight path and

rotation about a constant vector. Much effort has been spent finding

such paths that are free from encounters with joint reach limits.

When a manipulator has more joints than the number of degrees of

freedom in the task space it is said to be kinematically redundant [3].

The Jacobian matrix for a kinematically redundant manipulator is not

square and cannot be directly inverted to arrive at an easy resolved

rate law. There are more joint variables to solve for than there are

kinematic equations. There is not enough information to solve for the

joint rates needed to move the hand. In general, there may be an

infinite number ways to move the joints in unison to provide the desired

hand motion for the kinematically redundant manipulator [4],[5].

It is essential to arrive at some sort of a resolved rate law in

order to control or simulate a manipulator. Several methods have been

introduced to arrive at adequate resolved rate laws for the kinematical-

ly redundant manipulator. One approach is to add specific constraints

on the manipulator so that the kinematic equations can be solved. A

more general approach is to minimize or maximize an objective function

subject to the kinematic constraint equations. These methods have been

investigated in several papers to study iteratlve solutions to the

kinematically redundant constraint equations [I],[3-7].

In this paper an optimal control law with a weighting matrix is

derived using the Moore-Penrose pseudo-inverse for general manipulators

with various dimensions in task space and joint space. The behavior of

the control law is demonstrated and investigated using a kinematically

redundant planar arm simulation. Several algorithms are introduced and

evaluated for dynamically adjusting the weighting matrix during the

trajectory for the purpose of avoiding joint reach limits.

2. PROBLEM FORMULATION

The resolved rate law for a manipulator is derived from the

kinematic equations. For a manipulator with n joints and a hand operat-

ing in a task space of m dimensions, the m kinematic equations are of

the form:

x = [x k] = [fk(el,e2,...en)} k-l,m
(2,1)

where x is the vector containing the task space coordinates and e is the

vector of joint angles. If each joint is moved by a small amount, A0,

then the movement of the hand in the task coordinates, &x, is found in

the differential of the kinematic equations:

Ax = [j] de (2.2)

ORIGINAL PAGE IS

OF..POOR QUALITY



where 3 is the Jacobian matrix [8], composed of the partial derivatives

of the functions f with respect to each of the joint angles. Similarly,

the kinematic rate equations are found by differentiating the kinematic

equations with respect to time.

v - dx/dt - [J] w (2.3)

where v is the hand velocity vector expressed in the task coordinates

and w ks the vector of joint rates. The resolved rate law is found by

solving the kinematic rate equations (2.3) for the joint rates (w) in

terms of the hand veloclty (v). In the case where the task space and

the joint space have the same number of dimensions (m-n) the 3acobian

matrix is square and the resolved rate law is easily found.

-i

w - [a] v (2.4)

When the determinant of the Jacobian is zero, the manipulator is in a

physical singularity and cannot supply motion in all of the dimensions

of the task space. In mathematical terms the joint space does not span

the task space when the arm is in a singularity.

When the manipulator has fewer joints than dimensions in the task

space (n<m) the system is overdetermlned and the resolved rate law may

be found by using the pseudo-Jacobian method. For a 5 jointed manipula-

tor acting in a task space of 6 dimensions, there will be 6 kinematic

equations but only 5 joint variables.

v - J w (2.5)

6xl 6x5 5xl

The brackets around the Jacobian have been dropped to simplify the

notation. The resolved rate law for such a manipulator can be derived

by pre-multiplying by the Jacobian as follows:

T T

J v - J J w (2.6)

T -1 T

w - (J J ) J v (2.7)

T -i T

w - [ ( J J ) J ] v (2.8)
5xl 5x6 6x5 5x6 6xl

The expression within the brackets is the Moore-Penrose pseudo-inverse

of the full rank rectangular (6x5) Jacobian for the overdetermined

system of equations 2.5 [9].

For a kinematically redundant manipulator (n>m) the Jacobian matrix

is not square and the system of equations is underdetermined. For a 7

jointed manipulator operating in a task space of 6 dimensions there are

6 kinematic equations and 7 joint variables. The Jacobian matrix is a 6

by 7 matrix. There are several approaches which have been used to solve

this underdetermined set of equations. The approach taken here is to



introduce an objective

straint equations:

V - J w

6xl 6x7 7xl

function to be minimized subject to the con-

(2.9)

An obvious objective function to consider is:

I 2 2 2 2

Z- - ( w + w + w ... + w )
2 l 2 3 n

(2.tO)

When this function is minimized, the solution results in the least

amount of instantaneous motion in all joints. Using the method of

Lagrangian multipliers (L) the following n+m equations result [II].

T

w - J L (2.11)

J w - v (2.12)

Solve equation 2.11 for the Lagrangian multipliers and use equation 2.12

to substitute v for Jw.

T -i T -I

L - ( J J ) J w - ( J J ) v (2.13)

Substituting this expression for the Lagrangian multipliers gives the

resolved rate law.

T T -I

w - [ J ( J J ) ] v (2.1&)

It is interesting to compare this result with that of the pseudo-inverse

result of equation 2.7. The expression in brackets in equation 2.1& is

the Moore-Penrose pseudo-inverse of the Jacobian for the underdetermined

system of equations (2.9) [_],[9].

A more interesting objective function [I] has the form:

1 2 2 2

Z = - ( a w + a w + ... a w ) (2.15)

2 II _ 22 2 nn n

or in matrix notation:

1 T

Z - - w A w (2.16)

2

The constraint on the weighting matrix A is such that the function Z is

non-negative for all values of w [II]. This condition will be satisfied

by considering only diagonal weighting matrices with positive values.

The resolved rate law that results from optimizing this objective func-
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tion can be found by following the procedure used in equations 2.11

through 2.14.

-i T -i T -i

w- A J ( .7 A J ) v (2.17)

This result also appears in [I]. For the case of the seven jointed

manipulator described above this resolved rate law is

-I T -I T -i

w = A J ( J A J ) v (2.18)

7xl 7x7 7x6 6x7 7x7 7x6 6xl

where the dimensions of each matrix and vector have been indicated for

clarity. The weighting matrix A is of special interest. It can be used

to control the motion of the joints by dynamically changing the values

of the diagonal components during the trajectory.

v

3.0 IMPLEMENTATION

The control law expressed by equation 2.17 was implemented into a

kinematically redundant planar manipulator model. The planar arm model

was developed for the purpose of studying the motion of the redundant

manipulator. This model is easy to work with because the task space is

confined to a flat plane and is adequate for studying the behavior of
the control law.

3.1 The Kinematically Redundant Planar Manipulator (KRPM)

The KRPM model has a task space composed of 3 degrees of freedom as

shown in figure I. The task space is composed of X, Z and P (pitch)

directions for the hand, and all joints are pitch Joints. The number of

pitch joints (n) can be specified from 3 to 10. For this study, n was

set to 4 so that there is only I redundant joint except where noted

otherwise. This was done to form a direct analogy with the 7 jointed

manipulator operating in a task space of 6 degrees of freedom. The

kinematic equations for the 4 jointed planar arm are shown below. The

usual abbreviated notation is used to simplify the algebra.

cl = cos(el)
cl2 = cos(e I + e2)

c123 - cos(e I + e 2 + e3)

c1234- cos(e I + 82 + 83 + CA)

similarly for sl, s12, s123, and s1234 using sines

L i - Length of boom i (3.1)

k_
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The kinematic equations are now easily written.

X - Llcl + L2c12 + L3c123 + L4c1234

Z - -Llsl - L2s12 - L3s123 - LdSI23A

p . e I + e 2 + e 3 + 84

The Jacobian for this arm can be found analytically by

the above equations.

(3.2)

(3.3)

(3.4)

differentiating

-Llsl -L2s12 -L2s12 -L3s123 -L3s123 -Lds1234

-L3s123 -Lds1234 -Lds1234 -Lds1234

-Llcl -L2c12 -L2c12 -L3c123 -L3c123 -L4c1234

-L3c123 -L4c1234 -L4c1234 -L4c1234

1 1 1 1 (3.5)

The Jacobian for the planar arm can be greatly simplified by considering

the special case where all of the boom lengths are set to unity. The

following abbreviations are also convenient.

c14 I cl + c12 + c123 + c1234

c24 = c12 + c123 + c1234

c34 = c123 + c1234

similarly for sl4, s24, and s34 (3.6)

The Jacobian for the special case can now be conveniently expressed

follows.

S i

-sl4 -s24 -s34 -s1234

-c14 -c24 -c34 -c1234

I t I I

as

(3.7)

The KRPM model was simulated in FORTRAN on an HP9000 desktop 32 bit

super micro computer. The model simulates the kinematics of any planar

arm with 3 task dimensions (m-3) and any number of pitch Joints (n) and

booms of independent lengths. The Jacobian is computed numerically

using a recurslve vector form [I] to allow the simulation of various

arms types. The attributes of the manipulator are described in a data

file. Various manipulators may be represented by changing the data

file.

3.2 Implementation of the Control Law

The optimal RRL (equation 2.17) was implemented into the KRPM arm

model by first adapting the dimensions to those of the planar arm. The

task space contains 3 dimensions, and the number of joints (n) may be 4

or greater. The RRL for the 4 jointed KRPM is defined as follows with

dimensions shown.
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-i T -I T -I

[RRL] - A J ( J A J ) (3.8)

4X4 4XA 4X3 3X4 4X4 4X3

The simulation iterates through the RRL to drive the hand to a

desired stats. The flow of the calculation is as follows. The arm is

positioned at a valid set of joint angles (glnitia I) and through the

forward kinematics the resulting hand state (Xinitial) is computed. Then

an input is made to indicate the desired final hand state for the arm

(Xfinal). The difference between the two hand states (Ax) is found.

Ax - Xfina I - Xinitia I (3.9)

The number of steps to take during the trajectory (s) can be selected.

The vector Ax is divided into s steps. The RRL is computed using

equation 3.8 and then the desired joint angle step 48 is computed.

Ae - [RRL] &x/s (3.10)

The joint angles are then updated by adding the changes in joint

angles. This procedure is repeated for steps 2 through s, maintaining

the same step length in distance (X and Z) and in rotation but with an

adjustment in the vector direction (IAxl). After the last step is

taken (step number s), a Newton-Raphson (NR) iteration is automatically

invoked to trim up the final hand state to within a tolerance of the

desired hand state. This method does not consider the joint rates of

the manipuiator. This simulation progresses by taking steps.

3.3 Step Size

A study was performed to determine the step size needed to provide

hand motion along a straight line. Good results are measured by

inspecting the path that the end-effector describes. The ideal

trajectory should be a straight line. Several trajectories were tested

while varying the number of steps between 1 and 80.

In figure 2 the arm is commanded from the joint angle state at A to

the hand state at B. When a Newton-Raphson (NR) iteration is used

(s-l) the first step actually goes the wrong way, to point i in figure

2a. When the NR iteration is completed, the arm ends up at the joint

angle state shown at B. In figure 2b a two step iteration (s-2) is

shown. The first step is a NR half-step and the second step is the

remaining half step with an adjustment in direction. A full step NR

iteration occurs between 2 and B resulting in a different final joint

state than in 2a. A ten step iteration (2e) results in a reasonably

straight hand trajectory, but eighty steps are required for very good

results (2f).

In figure 3a the arm was commanded from the joint state of (90,0,

-90,0) at A to the hand state of (3,0,0) at B with a small step size

arriving at the joint configuration at B. This trajectory was then

reversed by commanding from the joint angles at point B to the original

hand state at A (2,-2,0) for various step sizes. Notice that for large

8



step sizes (figures 3b and 3c), the arm does not return to the original

joint configuration of (90,0,-90,0) in figure 3a. As the step size

decreases (a larger number of steps), the reverse trajectory converges

upon the perfect joint state of (90,0,-90,0). This is expected because

the trajectory that minimizes the motion of the joints in one direction

should also minimize the motion in the reverse direction also. This

procedure is considered a validation of the implementation of the RRL.

These results illustrate the importance of takin 8 small step sizes while

seeking a practical joint angle solution for a redundant arm using the

iterative inverse method.

3.4 Iterative Inverse Solutions

Several investigators have used modified NR algorithms to find

inverse kinematic solutions for manipulators [3],[5],[6],[10]. All of

these approaches are aimed at findin8 a quick joint angle solution with

large step sizes in joint space, causin E the hand of the manipulator to

take an unpredictable and unrealistic path. This poses two problems

when dealin E with a physical manipulator. When the robot is actually

commanded from the initial joint angles to the hand state through a

resolved rate law, a different set of joint angles is likely to result

than the one found by the iterative inverse. This effect is best illu-

strated in figure 2 where the joint angles at the final configuration in

2a are very different from the joint angles at the end of figure 2e.

The Joint angle solution is not very useful if the manipulator cannot be

commanded to it. Secondly, when large steps in joint space are made

there is more chance of violating the joint reach limits.

If the iterative inverse for the redundant arm constrains the hand

to follow a straight path, rotate about a constant vector and checks for

joint reach Limits durin 8 the iteration then a solution arrived at will

be a feasible one. This requires havin8 a knowledge of the RRL that

will drive the manipulator and takin8 small steps in the iteration.

4.0 BEHAVIOUR OF THE OPTIMAL RESOLVED RATE LAW

The behaviour of the optimal resolved rate law in the KRPM model is

demonstrated in this section. Several trajectories were run to illus-

trate the ability of the control law to handle the redundancy of the

kinematics and to study the effects of the weighting matrix on the

joint motion.

The ability of the control law to handle the redundancy of the arm

was demonstrated by driving the arm to the same hand state from various

starting configurations. It also serves as an inverse solution to the

kinemat.ics, by providing several possible joint sets that satisfy the

requested hand state. In figure 4 the end-effector was commanded to the

state X-3, Z-O, and Pitch- 0 (3,0,0) from six different initial joint

configurations. In each case the end-effector ends up at the final

state of (3,0,0), but with different final joint angles. This simple

test demonstrates the ability of the control law to drive the KRPM to

different final joint states for a given end-effector state. The final

joint angles are dependent on the initial joint angles.

The above maneuvers were performed with the weighting matrix A in

9



equation 3.8 equal to identity. This is the equivalent of having no

weighting matrix (equation 2.14). The effect of the weighting matrix on

the motion was demonstrated by running the same trajectory with various

values of one of the components of the A matrix and observing the

effects on the motion of the corresponding joint.

In figure 5 the arm was commanded to the end-effector state of

(2,0,0) at B from the joint angle state (90,-90,0,0) at A. When the

weighting matrix is not used (A is identity), the final value of the

second joint is undesireable (fig. 5a). When a value of 2.0 is used for

A(2,2) and 1.0 for all other diagonal components of A, the final posi-

tion of joint 2 is noticably better (fig. 5b). Joint 2 moved less from

start to finish than in figure 5a. The joint moves progressively less

from start to finish as A(2,2) is increased. The remaining pitch joints

have moved more to make up for the loss of mobility in joint 2, thus

resulting in a more desirable overall final arm configuration.

In figure 5a the final condition of the arm is not disireable

because joint 2 could be very near a reach limit, thus restricting any

future movement after arrival at the desired end-effector state. In

figure 5e, the final situation is much more desireable, because joint 2

has more freedom to move around in the neighborhood of the final end-

effector state.

In this section it has been demonstrated that the weighting matrix

can be used to discourage the motion of particular joints. It seems

reasonable to use this information to maintain the joints away from

their respective joint reach limits. This is a very desireable goal in

robotic control, but is limited to redundant manipulators.

5.0 REACH AVOIDANCE ALGORITHMS

The behaviour of the pseudo-inverse of equation 2.1A has been

reported to be peculiar in some cases [A]. The peculiarity has been

associated with joint reach limit violations during certain tasks such

as a closed path or cyclic motion. If reach avoidance logic is incorpo-

rated into the RRL, these problems may be resolved. One method of

incorporating reach avoidance into the RRL is to include the upper and

lower joint limits as a constraint in the optimization algorithm [6],

which may become a complicated treatment. A simpler approach is taken

here which makes use of the weighting matrix A in the RRL of equation

3.8.

In the previous section the effect of the weighting matrix on the

arm motion was illustrated. It was shown that the redundant arm can be

controlled to arrive at different final joint angles, some more desire-

able than others, and yet satisfy the same hand state. With these two

findings, it is evident that the arm can be driven to arrive at various

final Joint angles as desired by controlling the weighting matrix during

the trajectory.

The components of the weighting matrix (diagonal) must be computed

from pass to pass according to some driving requirements. Examples of

driving requirements are obstacle avoidance, ]oint reach iimit

avoidance, or some mechanical or electrical criteria. For this study,

the goal is reach limit avoidance.

Three algorithms were implemented for evaluation. The first algo-

1 0 --_
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rithm is the simplest: when any joint is within a tolerance of a reach

limit then the component of the weighting matrix for that joint is set

to a large value (ABIG), otherwise the component is set to unity.

ABIG will be a design constant that may be varied to provide the desired

performance.

The second algorithm is similar to the first, but has the following

requirement. If a joint is moving away from its reach limit then the

weighting matrix component for that joint is set back to unity. This

encourages the joint to move away from the tolerance zone.

The third alEorlthm does not use the tolerance test. The value of

the weishting matrix component for each joint is scaled from I at its

midrange value to ABIG at either of its joint reach limits. Also, as in

algorithm number 2, if the joint is moving toward its midrange value

then the value of the weighting matrix component is set to unity. This

algorithm is designed to encourage each joint to stay near the midrange

value.

Each of the above three algorithms were implemented into the KRPH

model described previously and tested until validated. The algorithms

were then used to study a single joint encountering a reach limit and

two joints encountering reach limits simultaineously.

To test the ability to avoid a single joint reach limit, take the

case where the start and end of a trajectory are known to be valid end-

effector states, but a reach limit is encountered without reach

avoidance. The trajectory shown in figure Ad was used for this test

where the third joint begins at -90 degrees, reaches -106 degrees, and

ends at -87 desrees. Suppose that the limit for this joint is at -I00

deErees. Fisure 6 shows the trace of the third joint with no reach

avoidance and for each of the three reach limit avoidance algorithms

using a value of I00 for Abig. Each of the algorithms successfully

avoided the imposed reach limit. In method I the joint angle does not

move back out of the tolerance zone of I0 degrees. In methods 2 and 3,

the joint moved back out of the reach zone of I0 degrees from the reach

limit.

The trajectories with and without reach avoidance are shown in

figure 7. Notice that with reach avoidance the first joint moves faster

during the first few interations (figures 7b, c, and d) than without

reach avoidance (figure 7a).

In figure 8a the arm was commanded from the joint state of (g0,0,

-135,90) to the hand state of (-.I,-2,90) causin E two joints, joint 3

and 4, to approach reach limits. With reach avoidance both joint

positions are improved in the final configuration (figure 8b).

In the case shown in figure 9a joint 3 exceeds a -160 degree limit

and then goes past -180. With reach avoidance (figure 9b) joint 2

swings out dramatically to allow joint 3 to avoid its reach limit.

6.0 SUMMARY

The pseudo-inverse 3acobian with a weighting matrix has been

derived as a resolved rate law for the kinematically redundant manipula-

tor. The resolved rate law has been demonstrated with a kinematically

redundant planar manipulator model. Reach avoidance has been mostly

successfull with this model by dynamically adjusting the components of



the _ng matrix during a maneuver. In some extreme cases the reach

limit not avoidable. The locally optimized resolved rate law has

beenved by incorporating joint reach avoidance. Reach avoidance

has used in the inverse seeking solution to arrive at feasible

solut The need has been demonstrated for using small steps sizes

in trative inverse seeking algorithm for the purpose of arriving

at u_int angle solutions for trajectory planning.

work could be aimed at studylng reach avoidance techniques

duri_ial tasks such as cyclic motion. A similar exercise should

be p_ with a manipulator operating in 6 degrees of freedom as the

beha_uld be different than for the planar arm which operates in a

limime with all pitch joints.
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5 1. A Klnematlcally redundant planar manipulator (KRPM)

'our Joints and a task space of X, Z, and Pitch (P).
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Figure 2. When a full steD ts taken from A to B, the first steD
(Indicated by a "1") goes the wrong way. AS smaller steD are
taken from A to B by dividing the Dath Into 2 (b), 3(c), 5(d),
10(e), and 80 (f) equal steDs before taking full steDs to get to
B, the trajectory becomes straight and each steD goes In the
correct direction.
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(d) (e)

Figure 3. The arm was moved from A to B taking small steps (a).
StegDInQ back to A with a full step Iteration does not achieve

the same Joint an01es as A. As smaller steps are taken as shown
In the 2 step (b), 5 step Co), and 40 step (d) Iterations the
original configuration of A In (a) Is approached.
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Figure 4. The KRPM Is commanded to the same hand state of

3,0,0 at B from six different initial Joint angle states
at A to demonstrate the behaviour of the RRL.
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(a)

(b)

(c)

(d)

Figure 5. Effects of the weighting matrix on the trajectory are
shown for values of A(2,2) set at 1 (a), 2 (b), 10 (c), and 100
(d).-
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Figure 6. The effects of reach avoidance on Joint 3 during a

command from a joint state of 90,0,-90,0 to a hand state of
3,0,0. The reach limit Is successfully avoided for each of

the 3 reach avoidance algorithms.
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Figure 7. The trajectories are shown for the case of Figure 6
for no reach avoidance (a) where joint 3 violates a limit of -100

degrees, and for each of the rpach avoidance algorithms: method 1
(b), method 2 (c), and method 3 (d) where the reach limit is
avoided.
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(a)
(b)

Flgure 8. Reach llmlt avoidance demonstration for the case of

two joints violating reach limits. In (a) joints 3 and 4 violate

reach limits of -160 and 160. With reach avoidance (b) both
reach limits are avoided simultaneously.

(a)

/

A A

(b)

Figure 9. In (a) Joint 3 exceeds -180 degrees. This Droblem is

avoided In (b) when reach avoidance ts used. The Intermediate
• arm Dosltlons are shown to the right.
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